

Contents:

- 1. Summary of Course-wise Units of Semester V
- 2. Summary of Course-wise Units of Semester VI
- 3. Syllabus of Paper 1 of Semester V; Course code SIUSBCH51
- 4. Syllabus of Paper 2 of Semester V; Course code SIUSBCH52
- 5. Syllabus of Practical of Semester V; Course code SIUSBCHP5
- 6. Syllabus of Paper 1 of Semester VI; Course code SIUSBCH61
- 7. Syllabus of Paper 2 of Semester VI; Course code SIUSBCH62
- 8. Syllabus of Practical of Semester VI; Course code SIUSBCHP6
- 9. Overall Scheme of Examination
- 10. Scheme of Practical examination- semester V
- 11. Scheme of Practical examination- semester VI
- 12. Suggested Reading

T.Y.B.Sc. Biochemistry (3 units) Syllabus Credit Based Semester and Grading System To be implemented from the academic year 2020 – 2021

Summary of Course-wise Units Semester V (SIUSBCH5)

Course Code	Unit	Topics	Credits	L/week
SIUSBCH51	NUTRITIC CHEMIST	ON, BIOMOLECULES AND BIOPHYSICAL ΓRY-Ι	2.5	
	I	Basic concepts in nutrition; Carbohydrates		1
	II	Amino acids and Proteins		1
	III	Nucleic acids; Enzymes		1
	IV	Chromatography; Spectroscopy		1
SIUSBCH52	PHYSIOLO	OGY, METABOLISM, AND APPLIED	2.5	
		BIOCHEMISTRY-I		
	Ι	Carbohydrate metabolism		1
	II	Amino acid metabolism; Bioenergetics		1
	III	Plant growth regulators; Endocrinology		1
	IV	Fundamentals of Molecular Biology		1
SIUSBCHP5		Practical of course SIUSBCH51 and SIUSBCH52	3	8

T.Y.B.Sc. Biochemistry (3 units) Syllabus Credit Based Semester and Grading System To be implemented from the academic year 2020 – 2021

Summary of Course-wise Units Semester VI (SIUSBCH6)

Course Code	Unit	Topics	Credits	L/week
SIUSBCH61	NUTRITI BIOPHYS	ON, BIOMOLECULES AND SICAL CHEMISTRY-II	2.5	
	Ι	Basic concepts in nutrition; Lipids		1
	II	Membrane biochemistry		1
	III	Pharmaceutical Biochemistry		1
	IV	Centrifugation; Electrophoresis		1
SIUSBCH62	PHYSIOL	OGY, METABOLISM AND APPLIED	2.5	
		BIOCHEMISTRY-II		
	Ι	Lipid metabolism		1
	II	Basics of Immunology		1
	III	Industrial Biochemistry; Basics of tissue culture		1
	IV	Recombinant DNA technology; Introduction to Bioinformatics		1
SIUSBCHP6		Practical of course SIUSBCH61 and SIUSBCH62	3	8

T.Y.B.Sc.- BIOCHEMISTRY 3 – UNITS INTERDISCIPLINARY SUBJECT Semester V (SIUSBCH5)

COURSE TITLE: NUTRITION, BIOMOLECULES AND BIOPHYSICAL CHEMISTRY -I COURSE CODE: SIUSBCH51 CREDITS: 2.5

Unit No.	Topic No.	Contents	NOL
		Course outcomes: <i>The learner should be able to</i>	
		 Discuss concepts in nutrition and express the physiological significance of components of nutrition. Compute calorific value, RQ, BMR and deduce their significance. Describe the structure and properties of carbohydrates, proteins and nucleic acids and correlate them with their biochemical role. Classify enzymes, discuss enzyme kinetics and recognize their importance Employ techniques of Chromatography and Spectroscopy in biochemical investigations and solve related analytical problems. 	
Ι		Basic Concepts in nutrition ; Carbohydrates	15
	1.1	Basic Concepts in human nutrition : Proximate principles, energy content of food, Units of energy, and calorific value	1L
	1.1.1	Utilization of energy, BMR, factors affecting BMR and its significance. Concept of thermic effect of food (SDA), Physical	1L
	1.1.2	Nutritional importance of carbohydrates Functions of carbohydrates, Requirement, Dietary sources, Glycemic index, Significance of fiber	2L
	1.2	Carbohydrates:	
	1.2.1	Polysaccharides- Starch and Glycogen, Action of amylase on starch, Structural polysaccharides - Cellulose Chitin	3L
	1.2.2	Bacterial cell wall polysaccharide: Peptidoglycan framework (With structures of NAG & NAMA), beta lactam antibiotics- Penicillin and cephalosporin	2L

Extracellular matrix proteoglycan - Hyaluronate,

Chondroitin sulphate and Heparin (monomers and

3L

occurrence/Biomedical significance)

	1.2.3	Commercial importance of carbohydrates: Starch, Dextran, Cyclodextrin, chitosan, modified cellulose, pectin, agar	3L
	2.1	Amino acids and Proteins Nutritional significance of proteins Functions of proteins, Requirement, Dietary sources, Essential and non-essential amino acids, Nutritive value of proteins; BV and PEP	15 2L
	2.2	Proteins: Classification on the basis of shape	1L
		and function. Structural hierarchy of proteins Primary structure: Formation and characteristics of peptide bond, phi and psi angles Secondary structure: alpha helix- characteristics, forces stabilizing, factors influencing helix stability. Example: keratin beta sheet: characteristics, parallel/ antiparallel, forces stabilizing, example: silk fibroin Super secondary structures: Domains and Motifs (DNA	3L
	2.3	binding) Tertiary structure - forces stabilizing, example myoglobin, Function of myoglobin Quaternary structure - forces stabilizing, example	3L
	2.4	hemoglobin, Function of hemoglobin Primary structure/sequence determination of protein: Separation of polypeptide chains, breaking disulphide bonds by mercaptoethanol, End group analysis: Sanger reaction, Edman reaction, Dansyl chloride.	3L
	2.5	Cleavage of polypeptide- Trypsin, Chymotrypsin, Pepsin, Aminopeptidase, Carboxypeptidase. Protein denaturation Diseases resulting from altered protein conformation: Prion and Alzheimer's	1L 2L
III	3.1	Nucleic acid; Enzymes Nucleic acids:	15
	3.1.1	DNA: Structure elucidation: Rosalind Franklin- X-ray diffraction pattern (Physical evidence), Chargaff's rules (Chemical evidence), A, B and Z forms of DNA, Organization of DNA as	2L/3L
	3.1.2	Effect of heat on DNA: Hypochromism, Hyperchromism, Denaturation of DNA, Tm.	1L

Π

3.1.1	RNA: rRNA, t-RNA, m-RNA, hnRNA, snRNA, miRNA. Catalytic role of RNA	2L
3.2 3.2.1	Enzymes and Enzyme kinetics General properties of enzymes, Classification of enzymes- IUB/EC classification (up to I digit)	1L
3.2.2	Active site of enzyme, mechanism of action: lock and key, induced fit, transition state theory. Cofactors, Coenzymes (role of vitamins), Prosthetic groups, Apoenzyme and Holoenzyme	2L
3.2.3	Enzyme kinetics Factors affecting enzyme-catalysed reaction Derivation of Michaelis- Menten equation, Km, Lineweaver Burk plot, Catalytic efficiency- turn over number, Enzyme activity: Katal, IU Specific activity of enzyme.	2L/3L
3.2.4	Enzyme inhibition: Competitive (allopurinol and Sulphonamides, Methotrexate) and Noncompetitive (Iodoacetate and Diisopropyl fluorophosphate).	2L
3.2.5	Applications of enzymes in therapy (Streptokinase, Hyaluronidase), diagnosis (Creatine kinase, LDH), industry (Amylase, Protease, lipase)	1L
4.1	Chromatography; Spectroscopy Chromatography	15
4.1.1	Principle, technique and applications of - Ion exchange chromatography (Column) and Gel filtration chromatography.	5L
4.1.2	Introduction to GLC, HPLC and Affinity Chromatography -Principles only.	3L
4.1.3	Numerical problems based on above concepts.	2L
4.2	Spectroscopy	
4.2.1	General Principle, Beer-Lambert law and its limitations, significance of Lambda max, molar extinction coefficient	3L
4.2.4	Numerical problems based on above concepts	2L

IV

Semester V

COURSE TITLE: **PHYSIOLOGY, METABOLISM, AND APPLIED BIOCHEMISTRY-I** COURSE CODE: **SIUSBCH52**

CREDITS: 2.5

Unit No.	Topic No.	Contents	NOL
		 Course outcomes: The learner should be able to Explain the biochemical steps of metabolism of carbohydrates and amino acids/proteins Analyse the concepts of thermodynamics and deduce their application in living system Discuss the energy synthesis pathways in plants and animals Explain the processes of information transfer in prokaryotic cell and recognize these as target sites for drugs Describe the role of growth regulators/hormones in plants and animals and correlate it to physiological disorders 	
I		Carbohydrate metabolism	15
	1.1	Digestion and absorption of carbohydrates, Role of GLUT, Lactose intolerance	2L
	1.2	Introduction to metabolism: Catabolism, anabolism, role of ¹ high energy phosphates viz. ATP and thioesters, role of reduced coenzymes NADH and NADPH.	L
	1.3	Overview of catabolism, Glycogenolysis (Schematic) Catabolism of glucose: Glycolysis- cellular location, sequence of reactions, products, energetics Fate of pyruvate in aerobic and anaerobic conditions, Cori cycle Kreb's cycle: cellular location, sequence of reactions,	6L
	1.3	Anabolism - HMP Shunt (Synthesis of pentose phosphates) -Cellular location, sequence of reactions, oxidative and non-oxidative phases of pathway and multifunctional nature. Gluconeogenesis Glycogenesis (Schematic), Anaplerotic reactions – Role of Pyruvate carboxylase, PEP carboxykinase, Malic enzyme.	5L
	1.4	Regulation of blood glucose –role of insulin, glucagon and epinephrine	1L

	Amino acid metabolism; Bioenergetics	15
2.1	Amino acids and Protein Metabolism	11
2.1.1 2 1 2	Digestion and absorption of proteins and amino acids	ΙL
2.1.2	(AST/ALT), Clinical significance	1L
2.1.3	Decarboxylation of His, Trp, Glu and	1L
2.1.4	Deamination: Oxidative (NAD, FAD, FMN-linked oxidases) & Non-oxidative – Asp, Cys, Ser	1L
2.1.5	Urea Cycle - Cellular location, sequence of reactions, labeling of N-atom, formation and transport of ammonia.	2L
2.2	Bioenergetics	
2.2.1	Mitochondrial ETC Free energy, free energy change, exergonic and endergonic reactions. High energy compounds, ATP, Synthesis of ATP, Substrate level and oxidative phosphorylation	1L
	Oxidative Phosphorylation: Electron transport chain: electron carriers, redox potentials, basic chemistry, sequence and location of these electron carriers in mitochondrial membrane, Q cycle. Inhibitors of ETC:–Antimycin A, Amytal, Rotenone, CN,	2L
	Mechanism of ATP synthesis: Chemiosmotic hypothesis, Proton motive force, Structure of ATPase (F ₀ F ₁ ATPase)	2L
2.2.2	Photosynthesis Light-dependent and Light-independent reactions. Light dependent reactions, chloroplast, role of reaction center and accessory pigments	1L
	Photophosphorylation: Linear ETC / Z scheme, two reaction centers, production of oxygen and NADPH, proton gradient and ATP synthesis	2L
	Cyclic ETC in purple bacteria Light-independent reactions: Calvin cycle (schematic representation only)	1L

Π

III		Plant growth regulators; Endocrinology	15
	3.1	Plant growth regulators: Role of auxins, cytokinins, abscissic acid, gibberellins and ethylene	2L
	3.2 3.2.1	Endocrinology: Hormones, hormone receptor, classification of hormone on the basis of chemistry, organization of the endocrine system	1L
	3.2.3	Chemistry, synthesis, secretion and metabolic effects of thyroxine, insulin.	3L
	3.2.4	Chemistry & physiological role of oxytocin and vasopressin. Physiological role of Glucocorticoids and Epinephrine	4L
	3.2.5	Role of second messengers: cAMP, Ca and IP3, Mechanism of action of epinephrine (on glycogenolysis) and steroid hormone (on gene expression).	3L
		Endocrine disorders – Diabetes mellitus, Diabetes insipidus, Hypothyroidism (Cretinism & myxedema), Hyperthyroidism (Goitre – Simple & Toxic)	2L
IV		Fundamentals of molecular biology	15
	4.1	Cell cycle : phases and significance	1L
	4.2	Replication of DNA - modes of DNA replication, experimental evidence for semi- conservative replication, Mechanism, discontinuous DNA synthesis, termination of replication. Antibiotics inhibiting replication of DNA (Quinolones, Methotrexate, 5-fluorouracil)	5L
	4.3	Transcription of DNA - in prokaryotes, prokaryotic RNA polymerases, Steps in transcription, processing of RNA species, concept of split genes, reverse transcription Antibiotics inhibiting transcription (Rifamycin, Actinomycin D)	3L
	4.4	 Translation (protein biosynthesis) in prokaryotes activation of amino acids, chain initiation, chain elongation, chain termination, post translational modifications of proteins; Antibiotics that inhibit protein synthesis (Streptomycin, tetracyclins, puromycin) 	4L
	4.5	Gene regulation : Promoters, enhancers, Concept of operon, Lac operon	2L

PRACTICAL based on SIUSBCH51 & SIUSBCH52 Course code: SIUSBCHP5

Course Outcomes: The learner should be able to

- *1. To develop analytical skills and proficiency in preparation of standard solutions and buffers*
- 2. Gain expertise in the isolation of biomolecules from their natural source
- 3. Employ the basic reactions of biomolecules for their identification
- 4. Develop competence in estimation of biomolecules by Spectroscopy
- *5. Acquire training to estimate activity of enzymes and determine the kinetic parameters, Km and Vmax*
- *6. To employ basic statistics for analyzing and presenting experimental data.*

Sr No.	Experiments
I	Qualitative Analysis: - 1.Carbohydrates - Glucose, Fructose, Maltose, Lactose, Sucrose, Starch, Dextrin.
II	 2. Proteins - Albumin, Casein, Gelatin, Peptone. Estimation of biomolecules Volumetric analysis:- 1.Lactose by Cole's method/Glucose by Benedict's method Colorimetric analysis: - 2. Soluble proteins by Biuret method 3. RNA by Orcinol method 4. Glucose by GOD-POD / Maltose by DNSA method
III	Isolation (Minimum Two) 1. Starch from potato. 2. Casein from milk 3. Curcumin from turmeric
IV	Enzymology 1. Amylase: Km of amylase 2. Estimation of GOT and GPT
v	Biostatistical analysis: 1.Collection of data, types of data and presentation 2. Frequency distribution 3. Determination of mean, median and mode
VI	 Demonstration Experiments 1. Preparation of buffers and use of pH meter 2. Titration curve of amino acid 3. Optimum pH of amylase 4. Immobilization /entrapment of enzyme (amylase) in alginate 5. Glucose by Folin –Wu method

Semester VI (SIUSBCH6)

COURSE TITLE: NUTRITION, BIOMOLECULES AND BIOPHYSICAL CHEMISTRY-II

COURSE CODE: SIUSBCH61 CREDITS: 2.5

Unit	Topic	Content	NOL
		Course outcomes: The learner should be able to	
		1. To express nutritional significance of vitamins and minerals	
		and associated physiological disorders.	
		2. To compute body mass indicators and deduce their significance.	
		3. To describe the structure and properties of lipids and correlate	
		them with their biochemical functions.	
		4. To discuss the composition of biological membranes, their	
		function in transport and recognize the applications of artificial membrane vesicles	
		5. To employ techniques of centrifugation and electrophoresis in	
		biochemical investigations and solve related analytical problems.	
		6. <i>To recognize and express the role of biomolecules as pharmaceuticals</i>	
		7. <i>To explain the steps in discovery and development of a</i>	
		drug/biopharmaceutical	
I		Nutrition; Lipids	15
	1.1	Nutritional significance of	
	1.1.1	Vitamins and Deficiency disorders	
	1.1.2	Minerals: Fe, Ca, P, Mg	
	1.2	Lipids	
	1.2.1	Fatty acids & TAG :	
		Saturated fatty acids –classification, C2 to C20 (only	
		even C chain fatty acids)	
		Unsaturated fatty acids – MUFA, PUFA (2,3,4 db),	

1.2.2 Chemical reactions - Saponification, Iodination, Auto-oxidation, Rancidity of fats. Definition and significance - Acid Number, Saponification Number, Iodine Number and Reichert- Meissel Number.

Triacylglycerols - Simple and mixed.

Omega 3, Omega 6 and Omega 9 fatty acids.

	1.2.3	Compound lipids – Structure and function of Glycerophospholipids (Cephalin, Lecithin and Phosphatidyl inositol), Action of Phospholipases Functions of phosphosphingolipids (ceramide, Sphingomyelin), Glycolipids or Cerebrosides (Galacto and Glucocerebrosides)	
	1.2.4	Steroids and Lipoproteins Steroids - Cholesterol structure and biochemical significance Lipoproteins – Types (Chylomicron, VLDL, LDL, HDL) and biochemical significance.	
	1.2.5	Nutritional significance of lipids, Body fat composition, BMI and Hip: waist ratio	
II		Membrane biochemistry	15
	2.1	Biological membrane -Membrane constituents and assembly: Fluid-mosaic model, asymmetric distribution of lipids:	
	2.2	Membrane proteins : integral/transmembrane, Lipid-linked and peripheral	
	2.3	Membrane transport: Passive Diffusion Facilitated Diffusion: uniport, antiport, symport, GLUT Ion channels: Voltage gated and ligand gated; Role in nerve impulse transmission	
		Active transport : Na ⁺ –K ⁺ pump, inhibitors;	
	2.4	Liposomes and their applications	
III		Introduction to Pharmaceutical Biochemistry	15
	3.1	Biomolecules as pharmaceuticals : Introduction to terms- Drug/Pharmaceutical, Biopharmaceutical, Biologic	1L
	3.1.1	Pharmaceuticals of plant origin: Aspirin (salicylate), Alkaloids: Atropine, morphine, cocaine, ephedrine, papaverine, quinine, vinblastine and vincristine. Xanthines: caffeine and theophylline Terpenes: Taxol; Glycosides: Digoxin and Digitoxin	2L
	3.1.2	Pharmaceuticals of animal origin: Hormones: Sex hormones- Androgens, Progesterone and oestrogen; Adrenaline, Glucocorticoids and prostaglandins	1L

	3.1.3	Pharmaceuticals of microbial origin: Antibiotics: Penicillins, Cephalosporins, Tetracyclines	2L
		Aminoglycosides (streptomycin), Ansamycins (Rifamycin) Peptide antibiotics: Bacitracin, Gramicidin and Vancomycin	
	3.2	Steps in drug/biopharmaceutical Discovery and Development:	1L
	3.2.1	Introduction to Pharmacology, Pharmacognosy, Drug Discovery: Target identification and validation, lead identification (random screening and rational design approach) and optimization	2L
	3.2.2	Pre-clinical trials: Pharmacokinetic profile, Pharmacodynamics profile, Bioavailability, bioequivalence, toxicity study	3L
	3.2.3	Clinical trial –phases	2L
	3.2.4	Role of regulatory Authority- FDA; IND, NDA	1L
IV		Centrifugation; Electrophoresis	
	4.1	Centrifugation	
	4.1.1	General Principle, rpm, RCF, derivation of equation relating RCF and rpm, Types of centrifuges - Clinical, High Speed, Ultra –preparative and Analytical, Rotors- Fixed angle and swing out	2L
	4.1.2	Applications of centrifugation – Use of preparative centrifuge in the separation of cell organelles by differential centrifugation, proteins by rate zonal centrifugation and nucleic acids by isodensity centrifugation.	3L
	4.1.3	Numerical problems based on above concepts	1L
	4.2	Electrophoresis	
	4.2.1	Principles of electrophoresis, factors affecting the Electrophoretic mobility.	2L
	4.2.2	Types of electrophoresis: Moving boundary, Zone electrophoresis (horizontal), set up, Support media (paper, cellulose acetate, agar, agarose and polyacrylamide), technique, detection and recovery.	2L
	4.2.3	PAGE: Native and SDS, discontinuous electrophoresis for	3L
	4.2.4	separation of proteins. Applications of electrophoresis - Separation of proteins and nucleic acids, Purity determination, Molecular weight determination using PAGE, Isoelectric focussing	1L

Semester VI

COURSE TITLE: PHYSIOLOGY, METABOLISM, AND APPLIED BIOCHEMISTRY-II

COURSE CODE: SIUSBCH62 CREDITS: 2.5

Unit No.	Topic No.	Contents	NOL
		Course Outcomes: <i>The learner should be able to</i> 1. <i>Explain the biochemical steps of metabolism of lipids</i>	
		2. Discuss the basics of immunology and appreciate their application in diagnosis of diseases.	
		3. <i>Articulate steps in bioprocess technology and recognize its applications</i>	
		 4. Describe the basic technique of tissue culture and identify its applications 	
		5. <i>Explain the steps in recombinant DNA technology and recognize its applications</i>	
		6. <i>Express the scope, applications and potentials of bioinformatics.</i>	
I		Lipid metabolism	15
	1.1	Digestion and absorption of lipids	
	1.2	Catabolism - Knoop's experiment, Beta – oxidation of even carbon saturated fatty acids, role of carnitine, energetics from C4 to C20	
	1.3	Anabolism - Fatty acid biosynthesis (only Palmitic acid), fatty acyl synthetase complex.	
	1.4	Ketone bodies formation, utilization. Ketosis, physiological significance in Diabetes mellitus, starvation, alcoholism and pregnancy.	
II	1.4	Lipoprotein metabolism. Basics of immunology	15
	2.1	Immunity, antigen, hapten and antibody. Types of immunity: Innate, Acquired, Active and Passive Innate immunity: External barriers, Phagocytosis, Complement, Natural Killer cells	10
	2.2	Acquired immunity: Humoral and Cell - mediated Specificity, Self –Non-self recognition Humoral immunit y: B cells , plasma cells, functions of antibody. Cell-medi ated: T cells , subsets -T helper and cytotoxic T cells , MHC – class I and II.	

2.3 Cells and organs of immune system.

- 2.4 Immunoglobulins general structure, classes and sub-Classes- their structure and functions.
- 2.5 Antigen– antibody reactions Precipitation and agglutination, ELISA Principle, Biotin-avidin system

III

Industrial biochemistry; Tissue culture techniques

15

3.1 Bioprocess technology – Introduction, Steps in setting up

- 3.1.1 an industrial process, parameters, Selection of organism, screening, types of media, Batch and continuous fermentation, Basic components of a typical fermenter, Applications
- 3.1.2 Fermentation process for production of alcohol/wine/beer

3.2 Plant Tissue Culture

- 3.2.1 Requirements: Physical conditions, Nutritional requirements, General technique, explant, callus, totipotency, dedifferentiation, redifferentiation, role of plant growth regulators.
- 3.2.2 Different types of tissue culture techniques, protoplast fusion Applications of tissue culture

Recombinant DNA technology; Introduction to bioinformatics

15

4.1 Recombinant DNA technology

- 4.1.1 Genetic engineering Steps in DNA cloning, Restriction enzymes, Isolation of gene from cellular chromosomes, Cloning vectors (Plasmid, Phage, Cosmid, Improved vectors, and shuttle vectors), transformation, and selection of recombinant cells. Cloning of insulin gene
- 4.1.2 Transgenic plants Bt cotton, Cloning in plants using Ti plasmid.
- 4.1.3 Gene libraries, DNA probes DNA amplification by PCR, applications of PCR
- 4.2 Introduction to Bioinformatics
- 4.2.1 History of Bioinformatics, Genomics and Proteomics
- 4.2.2 Databases- types Public domain database, Sequence database, Structural database, Motif database, Genome database, Proteome database, Annotated sequence database – Gen Bank, EMBL, PIR, SWISS PROT, PDB, GDB.
- 4.2.3 Sequence analysis Tools BLAST, FASTA, L-ALIGN, CLUSTAL-X & W, RASMOL, Software for protein sequencing - PROPECT, AMMP, COPIA

IV

- 4.2.4 Applications of Bioinformatics in Sequence analysis, Molecular modeling and drug designing, Phylogeny/evolution, Ecology & population studies, Medical informatics and agriculture.
- 4.2.5 Micro-array analysis-concept

PRACTICALS based on SIUSBCH61 & SIUSBCH62 Course code: US3BCHP6

Course Outcomes: The learner should be able to

- *1. Gain expertise in the isolation of biomolecules from their natural source*
- 2. Recognize plants as models for studying cytotoxicity of drugs
- *3. Employ the chemical properties of biomolecules for their estimation in food sample*
- 4. Develop competence in separation and estimation of biomolecules
- 5. Acquire training in basic microbiology techniques
- 6. Employ basic statistics for analyzing experimental data.
- 7. Employ basic bioinformatics tools in the subject of biochemistry

S.No.

Experiments

I Cell Biology

- 1. Isolation of DNA and its detection
- 2. Microscopy of stages of mitosis in actively dividing Allium cepa cells
- 3.Effect of cytotoxic drug (methotrexate)/Colchicine on actively dividing cells of *Allium cepa*

II Food analysis

Mineral Estimation :-

Preparation of food ash

- 1. Calcium by EDTA method
- 2. Phosphorus by Fiske-Subbarow method
- 3. Iron by Wong method

Vitamin estimation

1. Estimation of vitamin C / Vitamin B1

III Chromatography

- 1. Circular paper chromatography of amino acids
- 2. Circular paper chromatography of sugars
- 3. TLC of pigments

IV Pharmaceutical Biochemistry

- 1.Extraction of caffeine
- 2. Preparation of aspirin

V Microbiology

Concept of pure culture and Mixed culture; Preparation of media

- 1. Monochrome, Gram and negative staining
- 2. Isolation and enumeration of bacteria
- 3. Antibiotic sensitivity test
- VI Biostatistical analysis (measures of dispersion) Determination of SD and variance

VII Demonstration Experiments:-

- 1. Separation of DNA/proteins by agarose gel electrophoresis
- 2. Column chromatography separation of chlorophylls
- 3. Agglutination reaction: Widal qualitative /Blood grouping
- 4. Immunodiffusion in gel

5. Bioinformatics: Sequence retrieval, Introduction to protein structure database

OVERALL SCHEME OF EXAMINATION

Biochemistry, as an interdisciplinary subject, consists of 03 (Three) Units of T.Y.B.Sc. carrying 600 marks as follows :

THEORY				
COURSE CODE	Title of Paper	Internal Assessment marks	Semester end Examination marks	Total Marks
SIUSBCH51	Nutrition, Biomolecules and Biophysical Chemistry I	40	60	100
SIUSBCH52	Physiology, Metabolism and Applied Biochemistry I	40	60	100
	TOTAL			200
SIUSBCH61	Nutrition, Biomolecules and Biophysical Chemistry II	40	60	100
SIUSBCH62	Physiology, Metabolism and Applied Biochemistry II	40	60	100
	TOTAL			200

PRACTICAL			
COURSE CODE	Marks per course	Total per semester	
SIUSBCH5	100 for SIUSBCH51 and SIUSBCH52	100	
SIUSBCH6	100 for SIUSBCH61 and SIUSBCH62	100	
TOTAL		200	

I. Scheme of Examination for Third year Science Undergraduate

External Examination : 60% Internal Examination : 40%

A. Scheme of External Theory examination at TYBsc. (Sem V and Sem VI)

- 1) Each theory paper shall carry **60 marks**
- 2) Each theory paper shall be **2 hours** duration
- 3) Each theory paper shall contain **04 questions of 15 marks each** as follows: -
 - Q1 Based on Unit I
 - Q2 Based on Unit II

Q3 Based on Unit III

Q4 Based on Unit IV

4) Marking system for **Questions I to IV**

Each main question of 15 marks be divided into sub questions with internal choice.

Maximum marks for a sub question should be 6 marks.

B. Internal Assessment:

Sr. No.	Particulars	40 Marks
1	ONE class test to be conducted in the given semester (Objectives and /or MCQs/answer in one or two sentences: 20M)	20 Marks
2	One activity/oral presentation/assignment based on curriculum/ report etc.to be assessed by the teacher	20 Marks

C. For Courses with Practical: There will not be any Internal Examination for practicals

D. External Examination for practicals:

Sr.	Particulars for External Practical Examination		Marks
No.			
	Particulars for External Practical Examination	Semester	100 Marks
	End		
1	Laboratory	80 Marks	
2	Journal	10 Marks	
3	Viva	10 Marks	

II. Educational tour /Industrial Visit

It is recommended that the TYBSc students be taken for an Educational tour / Industrial visit in Mumbai /Maharashtra/ other States in India to visit various Universities/ research centers/Industries (Pharma, Food, chemical, Biochemical, Beverages, Oil, etc.) to give first-hand knowledge of current trends in research and the exposure to the working of industry, academia and research centers.

A summary report of this Educational tour / Industrial visit may be evaluated for 10 marks as a part of the 20 marks activity-based internal assessment.

Course SIUSBCHP5	Experiments	Marks
	a. Isolation	20
	b. Estimation of biomolecule: Colorimetry/ Volumetry	15
	c. Enzymology	20
	d. Spots (Statistical analysis -10M; Qualitative and Demonstration experiments-15M)	25
	e. Certified Journal*	10
	f. <i>Viva voce</i>	10
	TOTAL	100

SCHEME OF PRACTICAL EXAMINATION SEMESTER V

* Candidate without duly certified Journals **shall not** be allowed to appear for the University Practical Examination.

- 1. The Sem V practical examination shall be conducted by the college
- 2. There shall be 02 (Two) examiners to conduct the practical examination, one Internal examiner and other external examiner
- 3. The external examiner shall be on the panel of examiner

4. The college shall invite one such examiner from approved panel as an external examiner

- 5. Duration for the Practical examination for Sem V
 - a) One day of 02 sessions of 3 ¹/₂ hours each
 - b) Morning session: 09.00 am to 12.30 pm Afternoon session: 01.00 pm to 4.30 pm

SCHEME OF PRACTICAL EXAMINATION

SEMESTER VI

Course	Experiments	Marks
SIUSBCHP6		
	a. Chromatography	20
	b. Colorimetric Analysis/Isolation	15
	c. Volumetric Analysis	15
	d. Spots (statistical Analysis – 15 M; Microbiology, Immunodiffusion and Demonstration- 15M)	30
	e. Certified Journal*	10
	f. Viva voce	10
	TOTAL	100

* Candidate without duly certified Journals **shall not** be allowed to appear for the Sem end Practical Examination.

1. The Sem VI practical examination shall be conducted by the College.

2. There shall be 02 (Two) examiners, one internal and other appointed from the panel of approved examiners.

3. Duration for the Practical examination for Sem VI

- a) One day of 02 sessions of 3 ¹/₂ hours each
- b) Morning session: 09.00 am to 12.30 pm
- c) Afternoon session: 01.00 pm to 4.30 pm.

Suggested Reading

- 1. Nelson, D. L., Lehninger, A. L., & Cox, M. M. (2008). *Lehninger principles of biochemistry*. Macmillan.
- Voet, D., Voet, J. G., & Pratt, C. W. (2016). Fundamentals of biochemistry: life at the molecular level. John Wiley & sons.
- Zubay, G. (1993). Biochemistry, Wm. C. *Brown Publishers, Dubuque, 302312223,* 2.
- Berg, J. M., Tymoczko, J. L., Stryer, L., & Clarke, N. D. (2002). Biochemistry. 2002. New York, New York, 10010.
- White, A., Handler, P., & Smith, E. L. (1964). Principles of biochemistry. *Academic Medicine*, *39*(12), 1136. Mc Graw and Hill publishers
- 6. Murray, R. K., Granner, D. K., Mayes, P. A., & Rodwell, V. W. (2003). Harper's illustrated biochemistry. A Lange medical book. *Section*, *3*, 254.
- 7. Upadhyay, A. (2009). *Biophysical chemistry*. Himalaya Publishing House.
- 8. Wilson, K., & Walker, J. (Eds.). (2000). *Principles and techniques of practical biochemistry*. Cambridge University Press.
- 9. Cooper, T. G. (1977). *The tools of biochemistry* (No. 574.192028 C6).
- 10. Conn, E., & Stumpf, P. (2009). *Outlines of biochemistry*. John Wiley & Sons.
- Boyer, R. F., & Boyer, R. (1986). *Modern experimental biochemistry* (pp. 119-144). Reading: Addison-Wesley.
- Sawhney, S. K., & Singh, R. (Eds.). (2000). *Introductory practical biochemistry*. Alpha Science Int'l Ltd..
- Segel, I. H., & Segel, A. H. (1976). *Biochemical calculations: how to solve mathematical problems in general biochemistry* (No. 04; QD415. 3, S4 1976.). New York:: Wiley.
- 14. Hall, J. E. (2015). *Guyton and Hall textbook of medical physiology e-Book*. Elsevier Health Sciences.
- 15. Hall, J. E. (2015). *Guyton and Hall textbook of medical physiology e-Book*. Elsevier Health Sciences.
- Orten, J. M., Neuhaus, O. W., & Kleiner, I. S. (1975). *Human biochemistry* (No. 574.192 07). CV Mosby.

- 17. Davidson, S., & Passmore, R. (1963). Human nutrition and dietetics. *Human nutrition and dietetics.*, (2nd ed).
- 18. Joshi, S. A. (1995). *Nutrition and dietetics*. McGraw-Hill Education.
- 19. Srilakshmi, B. (2006). Nutrition Science. New Age International.
- 20. Lewin, B. (2004). genes VIII (No. 04; QH430, L4.
- Russell, P. J., & Gordey, K. (2002). *IGenetics* (No. QH430 R87). San Francisco: Benjamin Cummings.
- 22. Owen, J. A., Punt, J., & Stranford, S. A. (2013). *Kuby immunology* (p. 692). New York: WH Freeman.
- Delves, P. J., Martin, S. J., Burton, D. R., & Roitt, I. M. (2017). *Essential immunology*. John Wiley & Sons.
- 24. Gajera, H. P., Patel, S. V., & Golakiya, B. A. (2008). *Fundamentals Of Biochemistry Textbook Student Edition*. IBDC Publishers.
- 25. Casida, L. E. (1968). Industrial microbiology. Industrial microbiology.
- 26. Mahajan, B. K., & Lal, S. (1999). Methods in biostatistics for medical students and research workers. *Indian Journal of Community Medicine*, *24*(03), 140.
- 27. Rastogi, S. C., Rastogi, S. C., Mendriratta, N., & Rastogi, P. (2006). *Bioinformatics: Concepts, Skills & Applications*. CBS Publishers & Distributors Pvt. Limited.
- 28. Jogdand, S. N. (2010). Environmental biotechnolog. Himalaya Pub. House,
- 29. Gupta, P. K. (1994). *Elements of biotechnology*. Rastogi publications.
- 30. Kothari, C. R. (2004). *Research methodology: Methods and techniques*. New Age International.